… "The first of two versions of the RayV Lite will focus on laser fault injection (LFI). This technique uses a brief blast of light to interfere with the charges of a processor’s transistors, which could flip them from a 0 value to a 1 value or vice versa. Using LFI, Beaumont and Trowell have been able to pull off things like bypassing the security check in an automotive chip’s firmware or bypassing the PIN verification for a cryptocurrency hardware wallet.
The second version of the tool will be able to perform laser logic state imaging. This allows snooping on what’s happening inside a chip as it operates, potentially pulling out hints about the data and code it’s handling. Since this data could include sensitive secrets, LSI is another dangerous form of hacking that Beaumont and Trowell hope to raise awareness of." …
Hack the planet!
starts attacking the ground with an axe
Hack the planet!
Security chips like smart card processors have safeguards against this sort of attack, fwiw. Regular chips are likely more vulnerable.
Safeguards against LSi may include :
Sensor-based detection ?
Error detection and correction ?
Redundancy and duplication ?
Shielding // physical + chemical protection ?
Anti-tamper mechanisms ?
Randomization and noise injection ?Chapter from “Security Engineering” (2nd ed) about physical tamper resistance:
https://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c16.pdf
It’s been ages since I read it so idr how much of it was at chip level. Really high end stuff have the secure chips in a tamper reactive enclosure so it’s difficult to get to them without first erasing the contents. The chapter discusses that ;).
Waiting for some MFer to use that shit to cheat it SM64 speedruns… or maybe a TASbot module. 🤔